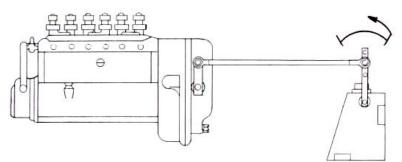


225 Series **Electric Actuator**

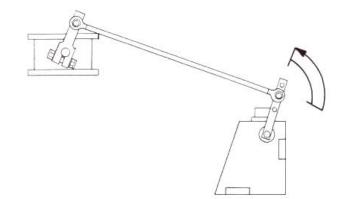
INSTALLATION

The actuator must be rigidly mounted as close as possible to the fuel control lever of the engine. Vibration from the engine will not affect the operation of the actuator. The preferred mounting is with the electrical connector at the top. Applications with the actuator upside down, on its back, or sideways should be avoided

Linkage arrangement of any actuator system is always important. High quality rod end bearings should be used. Rod end bearings that have high friction can cause instability and require servicing.


Levers and linkage should be sturdy yet low in mass for the fastest speed of response

Arrangement of the linkage for actuation of the engine fuel control is an important application consideration. For proportional actuators to operate with linear control systems, it is important to obtain a linear relationship between actuator stroke and fuel delivery. The linkage configuration for diesel fuel systems is typically as illustrated in Diagram 1. The lever on the actuator should be nearly parallel to the pump lever at the mid fuel position for linear fuel control.

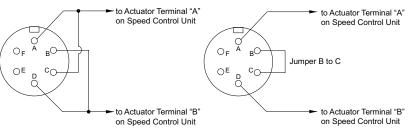

For proportional actuators to operate with non-linear systems, it is important to obtain a non-linear relationship between actuator stroke and fuel delivery. Carbureted, PT Pumps (CUMMINS), or other non-linear fuel systems require a non-linear fuel linkage configuration as illustrated in Diagram 2. A non-linear fuel system results when more engine power is developed for a given stroke at positions of low fuel settings rather than at high fuel settings. In this case the levers should be parallel at full load.

In general, the linkage should be adjusted so that the fuel control lever minimum and maximum fuel stops are used rather than the actuator internal mechanical stops. The actuator should be adjusted so that it operates over at least one half (12 degrees) of its available travel

DIAGRAM 1 FUEL LEVER AT MID FUEL POSITION

DIAGRAM 2 FUEL LEVER AT FULL FUEL POSITION

WIRING

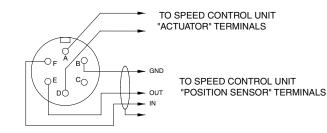

ADC Prewired for 12 or 24V ADD ACB The mating electrical connector must be wired in a configuration dependent on the system voltage supply. The maximum wire size that will fit ADB into the actuator mating half connector is #16 AWG (1.3 mm sq.). Cable

CH 1203, a pre-wired actuator cable harness, is available. It is 12 feet (4 Meters) in length and suitable for use on 12 or 24 volt systems.

> 225 Series Electric Actuator 8.13 PIB 2000 C © 2013 Copyright All Rights Reserved

12 Volt Applications	Note that it is preferable to connect four wires, one to each of the coils and wire per Diagram 3. Maximum current is 8 Amps The recommended wire size is at least #16 AWG (1.3 mm sq.)
24 Volt Applications	A simple jumper wire between pins B and C at the mating ha connector can be made. The remaining two pins, A and D, can be extended to the required length. Maximum current is 4 Amps The recommended wire size is at least #18 AWG (1.0 mm sq.) See Diagram 4.

DIAGRAM 3 12 VOLT OPERATION DIAGRAM 4 24 VOLT OPERATION



Actuator cable harnesses with lengths greater than 10 ft. (3 meters) from the actuator to the speed control unit may introduce current losses which can restrict full rotation of the actuator. In this case, use of a larger gauge wire is required.

For applications where EMI is of concern, twisted, shielded cable for the actuator is recommended. Twisting of the cable alone will substantially reduce EMI.

NOTE The ADB225F version of the actuator includes a position sensor. See Diagram 5 for wiring. A GAC speed control unit that includes fuel management electronics is required to interface with this sensor. See the appropriate speed control unit literature for complete wiring information.

DIAGRAM 5 ADB225F WIRING

Reconfirm that the linkage is not binding and that friction is minimal. Before starting the engine, push the actuator to the full fuel position and release. It should return instantly

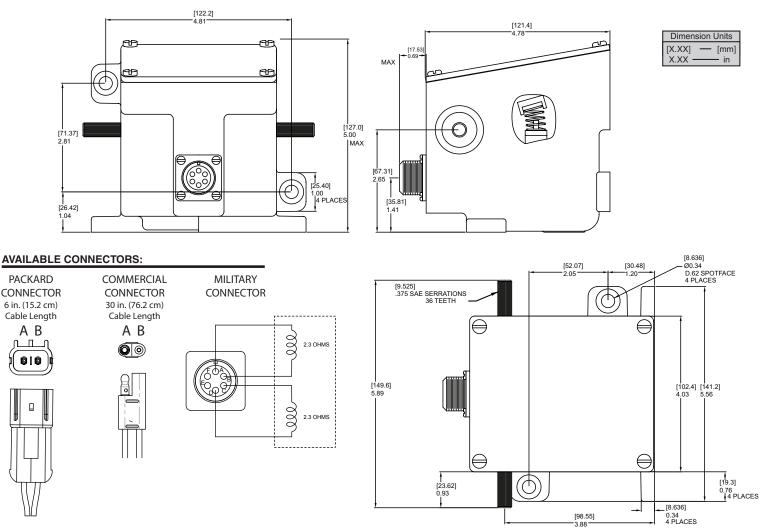
to the no fuel position without any binding. Once the engine has been started, the linkage can be optimized by temporarily inserting an ammeter in one of the wires between

the speed control unit and the actuator or by measuring the voltage across the actuator. Measure the actuator current or voltage at no load and full load. The range and the starting current or voltage are important for optimizing the linkage system. Typical

(3) ADJUSTMENTS

TROUBLESHOOTING

If the governor system fails to operate, make the following tests at the actuator mounted connector while moving the actuator through its stroke.

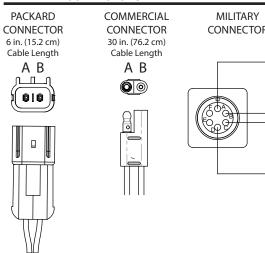

MEASURING THE RESISTANCE - ADB225

TERMINALS	RESISTANCE
A to B	2.5 Ohms
C to D	2.5 Ohms
A to C	Infinity
A to Housing	Infinity
C to Housing	Infinity

SPECIFICATIONS

PI	ERFORMANCE		PHYSICAL
Available Torque	2.2 ft-lb max (2.7 Nm)	Dimensions	See Below
Maximum Operating Shaft	25° ±1° CW/CCW	Weight	8.25 lb (3.75 kg)
Angular Travel		Mounting	Any Position, electrical connector at the top
P	OWER INPUT		preferred
Operating Voltage	12 or 24 VDC		RELIABILITY
		Vibration	Up to 20 G, 50 - 500 Hz
Normal Operating Current	3.0 Amps @ 12 VDC 1.5 Amps @ 24 VDC	Testing	100% Tested
Maximum Current Continuously Rated	8.0 Amps @ 12 VDC 4.0 Amps @ 24 VDC		
E	NVIRONMENT		
Operating Temperature Range	-65°F to +200°F (-54°C to +95°C)		
Relative Humidity	up to 100%		
All Surface Finishes	Fungus Proof and Corrosion Resistant		

(6)) **OUTLINE & DIMENSIONS**



values are shown in the table following for 12 volt and 24 volt System					
		ACTUATOR CURRENT/VOLTAGE RANGE CHART			
		12 VOLTS	24 VOLTS		
	No Load	2.5 Amp, 4 Volts	0.5 Amps, 12 Volts		
	Full Load	4 Amp, 6 Volts	1.2 Amps, 18 Volts		

To increase the range of the actuator voltage or current, move the linkage to a lower hole on the actuator lever. A lower range of actuator current than suggested can cause instability or poor performance.

To increase or decrease the no load current or voltage. Adjust the length of the link between the actuator and the engine fuel control.

Smaller angles of actuator travel may improve transient performance, but will reduce available force at the fuel control lever. Allowing the actuator to operate through at least one half (12 degrees) of its stroke will usually provide near optimum response.

MEASURING THE RESISTANCE - ADC225 & ADD225

TERMINALS	RESISTANCE
Red to White (12 V)	1.25 Ohms
Red to White (24 V)	5.0 Ohms
Red to Housing	Infinity
White to Housing	Infinity

Energize the actuator to full fuel (follow steps in control unit publication) and manually move the actuator through its range. No binding or sticking should occur. If the actuator passes the tests, the problem is elsewhere in the system. Refer to the control unit troubleshooting publication.